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What Do We Need to Render an Image ?

2D Image

Rendering
3D Scene Components? 



3D Scene Components to Render a RGB Image.
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3D Geometry
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3D Scene Reconstruction from 2D Information

3D Scene Reconstruction

Entangled



Why Reconstruct 3D Scenes

Auto Modeling

Augmented Reality

http://grail.cs.washington.edu/projects/nba_players/


Why Reconstruct 3D Scenes

Scene Editing / Relighting

Simultaneous Localization And Mapping (SLAM)
Fundamental Robotic Problem

https://www.youtube.com/watch?v=34n1tF5OtQU


Road Map

• 3D Geometry Reconstruction from a single 2D image.
• Implicit model

• 3D Geometry Reconstruction from Multi-view 2D images.
• MVS method

• 3D Scene Reconstruction from Multi-view 2D images.
• Reverse Volume Rendering



Obstacles of 3D Scene Reconstruction from a Single 2D Image.

1. Just like Recover a human body from his shadow.  
Not enough information

2. Components are entangled.

Entanglement of Geometry & Textures



3D Scene Reconstruction From a RGB Image.

Input

Output

Can only learn easy categories with a similar topology. 

Li, X., Liu, S., Kim, K., De Mello, S., Jampani, V. and Kautz, J., Nvidia Corp, 2022. Self-supervised single-view 3D reconstruction via semantic consistency. U.S. Patent 11,238,650.



3D Geometry Reconstruction From a RGB Image.

3D Geometry

Camera Pose

2D Image

Geometry Reconstruction



Quick Intro to Multi-layer Perceptrons (MLPs) 

Single-layer Perceptron
Multi-layer Perceptron



Back Propagation by Chain Rule



Different 3D Representations for Geometry Reconstruction

RGB images

Atlas: 2d manifolds [1]

Volume [2]

Point Set [3]

2d manifolds [4]

codes +

Implicit functions [5]

Directly Stich Up

Marching Cube

Poisson Reconstruction

Deform

Marching Cube

1. Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry. AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation. In CVPR, 2018.
2. Yan, Xinchen, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. “Perspective transformer nets: Learning single-view 3d object reconstruction without 3d supervision.” NIPS, 2016.
3. Fan, Haoqiang, Hao Su, and Leonidas J. Guibas. “A point set generation network for 3d object reconstruction from a single image.” CVPR, 2017.
4. Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. “Pixel2mesh: Generating 3d mesh models from single rgb images.” ECCV 2018
5. Xu, Q., Wang, W., Ceylan, D., Mech, R. and Neumann, U., 2019. Disn: Deep implicit surface network for high-quality single-view 3d reconstruction. In NeurIPS, 2019.

model



Signed Distance Functions [1]

S, the signed distance value

SDF [2]

The mesh surface is Implicitly represented as 
zero iso-surface of sdf values

1.Malladi, R.; Sethian, J.A.; Vemuri, B.C. (1995). "Shape modeling with front propagation: a level set approach". IEEE Transactions on Pattern Analysis and Machine Intelligence. 17 (2): 158–175.
2. Park, Jeong Joon, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. “Deepsdf: Learning continuous signed distance functions for shape representation.” CVPR, 2019.

MLPs



Signed Distance Functions for 3D Geometry Reconstruction

Signed Distance Fields [1] Marching Cube [2]

3D Mesh

1.Malladi, R.; Sethian, J.A.; Vemuri, B.C. (1995). "Shape modeling with front propagation: a level set approach". IEEE Transactions on Pattern Analysis and Machine Intelligence. 17 (2): 158–175.
2. Lorensen, W. E.; Cline, Harvey E. (1987). "Marching cubes: A high resolution 3d surface construction algorithm". ACM Computer Graphics. 21 (4): 163–169.

animation

https://www.youtube.com/watch?v=B_xk71YopsA


Occupancy Networks: Learning 3D 
Reconstruction in Function Space

Details

Input a single image Output a 3D mesh model

https://www.youtube.com/watch?v=w1Qo3bOiPaE&t=37s


DISN: Deep Implicit Surface Network for
High-quality Single-view 3D Reconstruction[1]

First method that can captures fine details & thin structures

1. Xu, Q., Wang, W., Ceylan, D., Mech, R. and Neumann, U., 2019. Disn: Deep implicit surface network for high-quality single-view 3d reconstruction. In NeurIPS, 2019.



DISN Overview

DISN uses the global features, and the point features to predict the SDF of p.



DISN Overview

DISN uses the global features, and the local features to predict the SDF of p.

Use SDF(gt) – SDF(ours) to optimize 
Encoder and Decoders



Feature Extraction

For a sampled 
3D point p(x,y,z)

Ours



Feature Extraction

For a sampled 
3D point p(x,y,z)

Ours

R,t, intriniscs



Results

atlas volume Implicit functionsdeformation

1. Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 3dn: 3d deformation network. In CVPR, 2019.
2. Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh models from single rgb images.
3. Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry. AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation. In CVPR, 2018.
4. Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In CVPR 2019
5. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function space. In CVPR, 2019.
6. Xu, Q., Wang, W., Ceylan, D., Mech, R. and Neumann, U., 2019. Disn: Deep implicit surface network for high-quality single-view 3d reconstruction. In NeurIPS, 2019.

[1] [2] [3] [5][4] [6] [6][6]

code +



Section 2

3D Geometry Reconstruction from Multi-view 2D images.
• MVS method



Multi-view Reconstruction (MVS)

Multiview 2D images Feature Matching Triangulation & 
Bundle Adjustment

Point Cloud 
Reconstruction
(Explicit representation)



Multi-view Reconstruction (MVS)

Example 1. Large-scale scene by drone

Example 2, Deep Learning Method
Sun, J., Xie, Y., Chen, L., Zhou, X. and Bao, H., 2021. NeuralRecon: Real-time coherent 3D reconstruction from monocular video. 
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 15598-15607).

https://www.youtube.com/watch?v=gh0_1DqufxE&list=PLF82640CAB157A3F2


Decoupling 3D Scene Components

Materials Properties

Geometry

Multiple RGB Images

Reconstruction

Camera Poses

Lighting

Textures



Section 3

• 3D Scene Reconstruction from Multi-view 2D images.
• Reverse Volume Rendering



Volume Rendering (Emit Absorb Model)

1. Emit different radiance (rgb color) to all directions
2. Absorb radiance by a probability      (density)



Volume Rendering (Emit Absorb Model)
far plane

near plane

radiance color
Expected color of ray (pixel):

density

transmittance

Probability to pass these particles

Probability to stop at this particle



Volume Rendering
far plane

near plane

Expected color of ray [1]:

1. Max, N.: Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics (1995)



Neural Radiance Fields [1]

Find the ray from camera,
and sample shading points

Compute radiance at shading points
and accumulate along rays to render pixels

Implicit function

1. Mildenhall, Ben, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. "Nerf: Representing scenes as neural radiance fields for view synthesis." ECCV (2020)

https://www.youtube.com/watch?v=LRAqeM8EjOo


Optimizing Neural Radiance Fields

Differentiable ray marchingRadiance field
(represented by ) RGB Images

Back Propagation
Gradient DescentRadiance field Pixel Loss on

RGB Images

Forward

Backward



Per-scene Optimization



Problems with Neural Radiance Fields

Slow Convergence (1-2 days).

Inefficient Rendering (45s)

Not Generalizable

Limited Scalability

A MLP encodes 
the entire scene 

No awareness of 
the shape priors.



Point-based Neural Radiance Fields

• More accurate reconstruction.
• Faster convergence.
• Able to take RGB image inputs only or both points and RGB images as input.
• Fix the holes and outliers for point inputs (enhance geometry modeling).



Point-NeRF: Point-based Neural Radiance Fields

A novel local radiance representation to achieve
scalable, efficient, and generalizable neural rendering



Generating initial point-based radiance fields

: a 3DCNN generates depth (points) and confidence

: a 2D CNN extracts 2D features and project to points

DISN



Next Steps: Point Initialization

Render

Pixel Loss

MVS 
models



Optimizing Point-based Radiance Fields

Shading + Differentiable RenderingPoint features
Implicit functions RGB Images

Back Propagation
Gradient Descent

Point features
Implicit functions

Pixel Loss on
RGB Images

Forward

Backward



Point-based Radiance Fields

Point Neighbors Searching

Point Neighbor Grouping



Neural Point Grouping



Target 
View

F(    ,           )F(   ,          ) + …… + ( )

point features

+…+
1

normalization

x x

F(    ,           )
Describe the local geometries 
and radiance colors

Compute Radiance and Density



Target 
View

F(    ,           )F(   ,          ) + …… + ( )

point features

density                 color

+…+
1

normalization

x x

+ ray direction

Compute Radiance and Density



Point-NeRF Gradient Updates

Gradient updates for radiance field initialization and per-scene optimization

+

(optional)

Existing 
points

Stage 1. Neural Points 
Generation/Initialization. 

Stage 2. Neural Points 
Per-scene optimization. 



Results



Results



Results on ScanNet
100 static input images as input Render a video by a test camera route (1000 views) 



COLMAP Points (400K)

Overcome Incorrect Initial Geometry   



Results with Incorrect Initial Points



Results with Incorrect Initial Points

Grow and Prune Points



Grow Dense Points from 1000 Sparse Points



Thank you!



Future Directions: Spherical Harmonics [1] for Acceleration

1. Ramamoorthi, Ravi, and Pat Hanrahan. "An efficient representation for irradiance environment maps." In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 497-500. 2001.



Target 
View

(    ,          )(   ,          ) +……+ ( )
Weighting Function

x x

RGB

Coefficient for 
each basis (optimized) 

SH basis
(close form)

Coefficients

Future Directions: Spherical Harmonics [1] for Acceleration

1. Ramamoorthi, Ravi, and Pat Hanrahan. "An efficient representation for irradiance environment maps." In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 497-500. 2001.



Neural Point Grouping



Point-based Radiance Fields

Point Feature Aggregation



Neural Point Voxel Indices



Neural Point Voxel Indices
Grid-Point indices



Neural Point Voxel Indices



Neural Point Searching

shading location



Neural Point Searching

Top k neighbors



Query Neural Points

66

Visualization of  valid 
shading locations (black)
amount voxel centers (orange)

Lib Name Points Query ray
Num. shading 

points K points Elapse (ms) Memory

kNN-CUDA 81920 32 x 32 16 128 1272.58 N/A

FRNN 5,242,875 32 x 32 10 128 44.4 8 GB

FRNN 5,242,875 800 x 800 16 128 N/A 17 GB

Open3D 5,242,875 800*800 2 128 33440 11 GB

Our CUDA 5,242,875 800*800 16 128 8.7 2.1 GB

https://github.com/vincentfpgarcia/kNN-CUDA
https://github.com/lxxue/FRNN
https://github.com/lxxue/FRNN
http://www.open3d.org/docs/release/python_api/open3d.ml.torch.ops.fixed_radius_search.html

