
Supplementary Material: Grid-GCN for Fast and Scalable Point Cloud Learning

Qiangeng Xu1 Xudong Sun2 Cho-Ying Wu1 Panqu Wang2 Ulrich Neumann1

1University of Southern California 2Tusimple, Inc

{qiangenx,choyingw,uneumann}@usc.edu {xudong.sun,panqu.wang}@tusimple.ai

Appendices

A. Time complexity deductions of center sam-

pling/node querying methods

We treat the number of voxel neighbors λ as a constant.

In addition, the center sampling methods are only used dur-

ing downsampling GridConv.

1. The time complexity of center sampling methods:

• RPS: Random sampling methods such as [1] provide

RPS a complexity of O(min(N,MlogM)). In prac-

tice, MlogM has a same or smaller magnitude of N ,

therefore report O(N) in the time complexity table.

• FPS: FPS on a finite point set has O(N2), when M is

not extremely small. However, [4] uses a Voronoi di-

agram to find the area that the point should exist, then

find the nearest point in the calculated area. As an ap-

proximate algorithm, it has O(NlogN).

• RVS: To sample point groups, CAGQ first scans over all

points and build indices, which takes O(N), RVS then

randomly samples M center voxels from at most N oc-

cupied voxels (the num. of occupied voxels ≤ the num-

ber of raw points), which takes O(min(N,MlogM)).
Under the same assumption of RPS, we report O(N) in

the time complexity table.

• CAS: If choosing CAS, we need to check all the un-

picked occupied voxels and challenge the incumbents.

To calculate a pair of Hadd and Hrmv , CAGQ checks λ

voxel neighbors of a challenger and an incumbent, result

in a O(λN) = O(N) for all extra operations. Therefore

CAS still has a complexity of O(N).
2. The time complexity of node querying methods:

• Ball Query: For each center, Ball Query needs to

run over N points to collect in-range points, then

sampleKpoints. Therefore it needs O(MN)

• k-NN: For each center, vanilla k-NN picksKnearest

points from N points. The partition-based topK method

takes O(N) computation. Therefore each center has

O(N). k-NN can also first check if a point is within

a range, then query topKcandidate points. These two

methods have the same worst-case complexity. The

overall complexity is O(MN).

• Cube Query: CAGQ’s Cube Query randomly

picksKpoints from λnv context points. Since the

order of points in each neighborhood is already ran-

domized during GPU’s multithreading collection, the

overall complexity is O(MK).

• CAGQ’s k-NN: CAGQ picksKnearest points among

points in the neighborhood. The partition-based topK

algorithm provides a O(λnv) solution for each point

group. If λ is treated as a constant, the overall com-

plexity is O(Mnv).

B. Training Details

For all experiments on ModelNet10, ModelNet40[10],

ScanNet[3] and S3DIS[2], we use Adam[6] optimizer with

beta1 = 0.9 and beta2 = 0.999. All models use batch

normalization[5] with no momentum decay and trained on

a single RTX 2080 GPU.

For ModelNet10 and ModelNet40[10], we start with a

learning rate of 0.001 and reduce the learning rate by a fac-

tor of 0.7 every 60 epochs and stop at 330 epochs. We

don’t apply weight decay. The network has 2 downsam-

pling GridConv layers each has 1024 and 128 point groups

and a final global GridConv layer to group all points as one

graph.

For ScanNet[3], we start with a learning rate of 0.001 and

reduce the learning rate by a factor of 0.7 every 150 epochs

and stop at 1500 epochs. Please note during each epoch, we

only sample one block on the fly in each region. Therefore

the training of one epoch is very quick. The network has

3 downsampling GridConv layers each has 1024, 256 and

24 point groups and 3 upsampling GridConv layers. We set

our weight decay as 10−5 during training.

For S3DIS[2], we start with a learning rate of 0.001 and

reduce the learning rate by a factor of 0.8 every 40 epochs

and stop at 200 epochs. The network has 3 downsampling

GridConv layers each has 512, 256 and 24 point groups and

3 upsampling GridConv layers. We set our weight decay as

10−8 during training.

1

C. Comparison between CAGQ and naive Grid

Query

In 2D image learning, a convolution kernel usually tra-

verses with a stride size that is smaller than the kernel size,

leading to overlapping receptive fields. Since naive Grid

Query first voxelizes the space and randomly picks M vox-

els, and then samples K points only within the voxel, the

queried point groups have no space overlaps. On the other

hand, CAGQ queries points inside voxel neighbors and uti-

lizes Coverage-aware sampling to make the center voxels

more evenly distributed.

To show the advantage of CAGQ over naive Grid Query,

we compare 3 models on ScanNet[3] and report the results

in Table 1. The two models using CAGQ are also the mod-

els we report in section 5.2 of the paper. We also train

a model using naive Grid Query. As a result of the non-

overlapping coverage by its point groups, the overall accu-

racy of the model with naive Grid Query can hardly reach

80%.

OA Latency (ms)

Grid-GCN(Grid Query + 1×K) 79.9% 15.9

Grid-GCN(CAGQ + 0.5×K) 83.9% 16.6

Grid-GCN(CAGQ + 1×K) 85.4% 20.8

Table 1: The overall accuracy and latency of three Grid-

GCN models on ScanNet[3]. Our full model uses CAGQ

with 1×K node points in each group. A compact model

with 0.5 × K is also reported. Another model uses naive

Grid Query with 1×K node points.

D. Algorithms of CAGQ

The general procedure of CAGQ is listed as Algorithm

1. The CAGQ k-NN algorithm mentioned in the paper is

listed as Algorithm 2. To use RVS or CAS, we can embed

the chosen algorithm in to step 2 of Algorithm 1. Cube

Query and k-NN can be embedded in to step 3.

The k-NN methods in Algorithm 2 is efficient in three

aspects:

• instead of all points, the candidates of k-NN are only the

points in the neighborhood.

• We collect K nearest neighbor points first from inner

voxel layers, then the outer voxel layers. We can stop

at a layer if we have already got K points, since all the

points in outer voxel layers are farther away than the

point collected so far.

• In each layer of voxel neighbors, if the number of points

so far collected plus the points in this layer is less than

K, we do not need to sort them but can directly include

all points in this layer.

Algorithm 1: CAGQ general procedure

Input N points: pi(χi, wi), i ∈ (1, ..., N)
Parameters N , M , K, λ, nv

1 Build voxel-point index V id, collect Ov:

For each pi :

(u, v, w)← quantize pi(x, y, z) into voxel index

If voxel(u, v, w) is first visited

Add (u, v, w) into Ov

If V id(u,v,w) stores fewer than nv points

Push point index into V id(u,v,w)

2 Center voxel sampling:

Oc ← select M voxels from Ov , by RVS or CAS.

3 Query node points and calculate group centers:

For each center voxel vj in Oc

Retrieve points in π(vj) by using indices.

Pick node points {pj1, pj2, ..pjK} in the

neighborhood by using Cube Query or k-NN

wcj ←
∑K

k=1 wjk

χcj ← weighted mean of {χj1, ..., χjK}
Return M point groups: groupj :

(cj(χcj , wcj), {pj1, pj2, ..pjK}), j ∈ (1, ...,M)

Algorithm 2: CAGQ k-NN for one point group in

step 3 of Algorithm 1

Input A center voxel vj , voxel-point index V id,Ov

Parameters K

Counter = 0; node points ={}
For each leveli of π(vj) (level0 is the center voxel vj

itself, level1 is the surrounding 26 voxels, etc.):

kl = 0
LayerPoints = {}
For each voxel vl in leveli:

If vl ∈ Ov:

stored points← Retrieve points from

V id(vl):
LayerPoints← add stored points

kl+ = |stored points|
topkl = min(K-Counter, kl)
If topkl = kl:

node points← LayerPoints

Else:

node points← topK(LayerPoints, topkl)

Counter += topkl

If Counter ≥K:

break;

Return node points

E. Calculation of center

In a point group, we calculate wc as the sum of its node points’ coverage weight. χc is calculated as the barycenter of

these nodes, weighted by the coverage weight.

wc =
K∑

j=1

wj (1)

χc(x, y, z) =

∑K

j=1 wj · χj(x, y, z)
∑K

j=1 wj

(2)

F. Performance comparisons of data structuring methods (more conditions)

We list the full experiments of different data structuring methods’ coverage and latency under more conditions in Table 2.

The first section shows the coverage of occupied voxels. We only report the space coverage of center sampling methods+Ball

Query or Cube Query, because the purpose of k-NN’s is not to query node points that is evenly spread, but to query the

nearest neighbor node points. The second and third section report the latency.

Center sampling RPS FPS RVS* CAS* RPS FPS RVS* CAS* RPS FPS RVS* CAS*

Neighbor querying Ball Ball Cube Cube Ball Ball Cube Cube k-NN k-NN k-NN k-NN

N K M Occupied space coverage(%) Latency (ms) with batch size = 1

1024

8 8 12.3 12.9 13.1 14.9 0.29 0.50 0.51 0.64 0.84 0.85 0.51 0.65

32 8 22.9 21.4 22.4 31.7 0.34 0.51 0.51 0.69 2.12 1.96 0.63 0.71

128 8 22.3 22.6 23.5 34.2 0.34 0.51 0.94 1.04 8.26 6.70 1.41 1.63

8 32 34.4 43.7 40.0 45.6 0.31 0.53 0.51 0.65 1.31 1.36 0.57 0.69

32 32 58.2 69.48 60.1 73.0 0.36 0.55 0.53 0.57 4.68 4.72 0.93 0.68

128 32 60.0 70.1 61.3 74.7 0.37 0.53 0.96 1.08 22.23 21.08 2.24 2.58

8 128 64.0 72.5 82.3 85.6 0.32 0.78 0.44 0.58 1.47 1.74 0.52 0.61

32 128 92.7 98.9 95.3 99.6 0.38 0.81 0.50 0.62 5.34 5.66 1.18 1.39

128 128 93.6 99.5 95.8 99.7 0.38 0.69 0.97 0.97 32.48 32.54 6.85 6.94

8192

8 64 19.2 22.9 22.1 25.1 0.64 1.16 0.66 0.82 1.58 1.80 0.65 0.76

32 64 42.7 42.7 35.8 46.3 1.47 1.47 1.15 1.39 2.73 2.73 1.72 2.16

128 64 40.6 47.1 38.6 51.3 1.14 1.55 1.18 1.38 13.70 12.72 9.42 11.71

8 256 60.1 64.1 73.3 94.3 0.40 1.51 0.53 0.61 4.53 5.54 0.54 0.68

32 256 75.4 88.4 77.6 90.7 1.11 2.19 1.04 1.29 5.13 5.94 3.06 3.52

128 256 79.9 90.7 80.0 93.5 1.19 1.19 1.17 1.31 21.5 21.5 15.19 17.38

8 1024 82.9 96.8 92.4 94.4 0.81 4.90 0.54 0.77 1.53 5.36 0.93 0.97

32 1024 96.3 97.8 99.3 99.9 1.15 5.09 1.10 1.54 5.18 8.99 4.92 6.32

128 1024 98.8 99.9 99.5 100.0 1.22 5.25 1.40 1.76 111.42 111.74 24.18 26.45

81920

8 256 21.7 25.7 26.2 31.2 3.46 10.54 2.20 2.87 9.77 15.97 1.85 2.15

32 256 34.2 40.1 36.0 48.5 7.59 14.51 3.15 4.34 20.43 26.14 5.95 6.17

128 256 36.6 42.6 37.4 51.1 9.41 15.91 3.52 4.19 77.68 78.34 34.04 40.04

8 1024 50.7 63.8 67.4 76.0 4.73 30.79 2.13 2.34 10.01 35.18 1.84 2.02

32 1024 70.6 86.3 78.3 91.6 8.30 33.52 3.34 3.88 19.49 43.69 8.76 10.05

128 1024 72.7 88.2 79.1 92.6 9.68 34.72 4.32 4.71 71.99 93.02 50.70 51.94

8 10240 98.8 99.2 100.0 100.0 8.82 255.9 4.11 8.23 19.96 268.22 9.54 14.88

32 10240 98.8 99.2 100.0 100.0 8.93 260.48 4.22 9.35 20.38 272.48 9.65 17.44

128 10240 99.7 100.0 100.0 100.0 10.73 258.49 5.83 11.72 234.19 442.87 69.02 83.32

Table 2: Performance comparisons of data structuring methods, run on ModelNet40 [10]. Center sampling methods include

RPS, FPS, CAGQ’s RVS and CAS. Neighbor querying methods include Ball Query, Cube Query and k-Nearest Neighbors.

Condition variables include N points, M groups, and K node points per group. Occupied space coverage = num. of occupied

voxels of queried points / num. of occupied voxels of the original N points.

G. Performance on each object class and more visual results of S3DIS

We report the IOU of each object class in Table 3 and visualize more results of S3DIS[2] in Figure 1 and 2. The segmen-

tation results are generated by our full model. In the visual results, Grid-GCN can predict objects such as chairs and tables

very accurately, but sometimes mislabels the points on the border of two planar objects such as a board and a wall.

Method OA mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet[8] - 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22

SegCloud[9] 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60

PointCNN[7] 85.91 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74

Grid-GCN 86.94 57.75 94.12 97.28 77.66 0.00 16.61 32.91 58.53 72.15 81.32 36.46 68.74 64.54 50.46

Table 3: Segmentation result on S3DIS[2] area 5. We report overall accuracy (OA, %), mean class IoU (mIoU, %) and

per-class IoU (%). Grid-GCN achieves the highest overall accuracy and mIoU among 4 models.

(a) Input XYZ+RGB (b) Ground truth (c) Ours

Figure 1: More visual result of S3DIS[2] area 5

(a) Input XYZ+RGB (b) Ground truth (c) Ours

Figure 2: More visual result of S3DIS[2] area 5

H. Summary of notations, acronyms and concepts

In the paper, we introduce the following concepts as well as their definitions. Here we list them again for clarity.

Notations and Concepts Descriptions

GridConv A network layer of our model, which includes a data structuring stage by using

Coverage-Aware Grid Query and a data aggregation stage by using Grid Context Aggregation.

CAGQ A data structuring module, named Coverage-Aware Grid Query.

GCA A graph convolution module, named Grid Context Aggregation.

RPS Random Point Sampling: A method that randomly samples M group centers from N points.

FPS Farthest Point Sampling: A method that samples one point a time,

each time picks the point that maximizes the distance to the selected points.

RVS Random Voxel Sampling (CAGQ)

CAS Coverage-Aware Sampling (CAGQ)

N The number of input points of a GridConv layer.

M The number of point groups sampled from N input points, the Grid Context Aggregation module

aggregates node points’ information to each group center, then output M representative points.

K The number of node points in each point groups.

center voxel For each point group, we select an occupied voxel and query node points in its neighborhood.

Ov The set of all occupied (non-empty) voxels in the space.

Oc The set of M center voxels that’s sampled from Ov .

node points For each point group, we query K points from context points in a neighborhood.

group center The barycenter of K node points in each point group.

π(vi) The occupied voxel neighbors of an occupied voxel vi.

λ The number of occupied voxel neighbors of an occupied voxel vi.

nv The max number of points CAGQ stores in each occupied voxel.

context points All stored points in π(vi), these points are the context points of the center voxel vi

and the point group sampled in this neighborhood afterwards.

χi The x,y,z vector of a node point pi or a group center c.

wi The coverage weight of a node point pi, which is the number of points that have been aggregated

to that point in previous layers. We initialize wi to 1 for each raw points.

fi The semantic features carried by a node point pi.

f̃i The semantic features calculated from fi.

ei The edge attention between node point pi and the center, calculated by the edge attention function.

f̃c,i The contribution from f̃i to the center, determined by ei and f̃i.

f̃c The features of the group center, aggregated from all node points’ contribution f̃c,i.

Table 4: Notations, acronyms and concepts.

References

[1] Abejide Olu Ade-Ibijola. A simulated enhancement of fisher-yates algorithm for shuffling in virtual card games using domain-specific

data structures. International Journal of Computer Applications, 54(11), 2012. 1

[2] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. ArXiv e-prints, Feb.

2017. 1, 4, 5

[3] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated

3d reconstructions of indoor scenes. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017. 1, 2

[4] Y Eldar. Irregular image sampling using the voronoi diagram. PhD thesis, M. Sc. thesis, Technion-IIT, Israel, 1992. 1

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 1

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 1

[7] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on x-transformed points. In

Advances in Neural Information Processing Systems, pages 820–830, 2018. 4

[8] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmen-

tation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 652–660, 2017. 4

[9] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese. Segcloud: Semantic segmentation of 3d point

clouds. In 2017 International Conference on 3D Vision (3DV), pages 537–547. IEEE, 2017. 4

[10] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep

representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

1912–1920, 2015. 1, 3

